Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 20, 2026
-
Abstract We characterize totally symmetric self-complementary plane partitions (TSSCPP) as bounded compatible sequences satisfying a Yamanouchi-like condition. As such, they are in bijection with certain pipe dreams. Using this characterization and the recent bijection of Gao–Huang between reduced pipe dreams and reduced bumpless pipe dreams, we give a bijection between alternating sign matrices and TSSCPP in the reduced, 1432-avoiding case. We also give a different bijection in the 1432- and 2143-avoiding case that preserves natural poset structures on the associated pipe dreams and bumpless pipe dreams.more » « less
-
We give bijective proofs of Monk's rule for Schubert and double Schubert polynomials computed with bumpless pipe dreams. In particular, they specialize to bijective proofs of transition and cotransition formulas of Schubert and double Schubert polynomials, which can be used to establish bijections with ordinary pipe dreams.more » « less
-
Abstract We present a direct bijection between reduced pipe dreams and reduced bumpless pipe dreams (BPDs) by interpreting reduced compatible sequences on BPDs and show that this is the unique bijection preserving bijective realizations of Monk’s formula, establishing its canonical nature.more » « less
-
null (Ed.)We give bijective proofs of Monk’s rule for Schubert and double Schubert polynomials computed with bumpless pipe dreams. In particular, they specialize to bijective proofs of transition and cotransition formulas of Schubert and double Schubert polynomials, which can be used to establish bijections with ordinary pipe dreams.more » « less
-
Gaetz, Christian (Ed.)
An official website of the United States government

Full Text Available